Health Effects of Per- and Poly-Fluoroalkyl Substances and Occupational Relevance to Military Firefighters

John W. Downs MD MPH FACP FACOEM LTC(P), MC, USA
Associate Professor
USUHS, Bethesda, Maryland

1 of 44

Disclaimers

- Views and opinions expressed in this presentation are those of the author and do not necessarily reflect the policy of:
 - Uniformed Services University
 - Department of Defense
 - Department of the Army
 - Department of the Navy
 - Department of the Air Force

No financial or organizational interests

Learning Objectives

- Describe the commonly identified sources of PFAS in the environment
- Describe the currently known basic toxicology and health effects of PFAS
- Develop an approach for responding to firefighter inquiries re: health effects of PFAS

Theoretical Case

- Firefighter requests information
- Perfluorohexane sulfonic acid (PFHxS)

Why Are We Here?

Trevor breaks down "forever chemicals," chemicals in our bodies that don't break down.

MOTHERBOARD TECHBY VICE

Business

Major restaurant chains commit to eliminating 'forever chemicals'

Several restaurant brands react after Consumer Reports finds dangerous chemicals linked to serious health problems widespread in fast food packaging

By Laura Reiley

March 24, 2022 at 3:03 p.m. EDT

The New York Water Crisis That Nobody's Talking About

For years, "forever chemicals" flowed into Newburgh's drinking water.

It turns out they came from a nearby air base.

Why Are We Here?

DEFENSE HEALTH AGENCY 7700 ARLINGTON BOULEVARD, SUITE 5101 FALLS CHURCH, VIRGINIA 22042-5101

October 23, 2020

MEMORANDUM FOR ASSISTANT SECRETARY OF THE ARMY (MANPOWER AND RESERVE AFFAIRS)

ASSISTANT SECRETARY OF THE NAVY (MANPOWER AND RESERVE AFFAIRS)

ASSISTANT SECRETARY OF THE AIR FORCE (MANPOWER

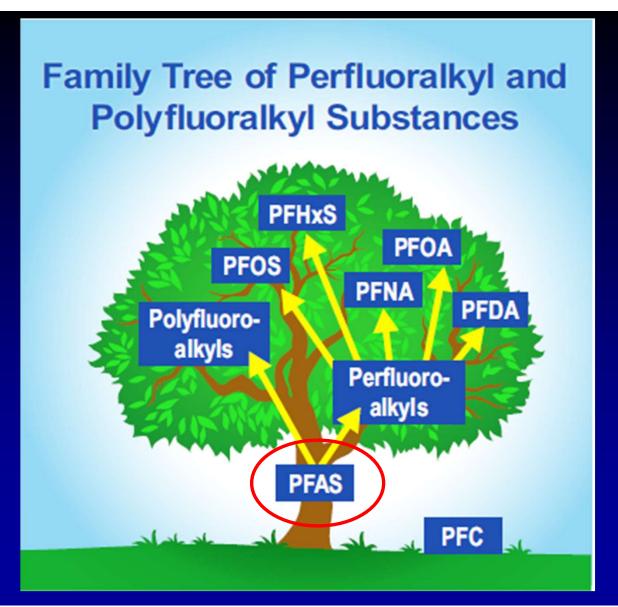
AND RESERVE AFFAIRS) COASTAL MISSISSIPPI MARKET, DEFENSE HEALTH AGENCY

JACKSONVILLE MARKET, DEFENSE HEALTH AGENCY NATIONAL CAPITAL REGION MARKET, DEFENSE HEALTH

CENTRAL NORTH CAROLINA MARKET, DEFENSE HEALTH AGENCY

DIRECT SUPPORT ORGANIZATION ARMY DIRECT SUPPORT ORGANIZATION NAVY

DIRECT SUPPORT ORGANIZATION AIR FORCE


SUBJECT: Blood Testing Department of Defense Firefighters for Perfluoroalkyl and Polyfluoroalkyl Substances

The National Defense Authorization Act for Fiscal Year 2020 (NDAA FY 2020), Section 707 issues a requirement:

"Beginning on October 1, 2020, the Secretary of Defense shall provide blood testing to determine and document potential exposure to perfluoroalkyl and polyfluoroalkyl substances (commonly known as "PFAS") for each firefighter of the Department of Defense (DoD) during the annual physical exam conducted by the Department for each such firefighter."

As such, military medical treatment facility (MTF) staff need to be prepared to offer and collect firefighter blood samples and order the PFAS test panel. To support this effort, a website was created to provide resources and information: https://health.mil/Military-Health-Topics/Combat-Support/Public-Health/PFAS.

https://www.atsdr.cdc.gov https://www.dep.pa.gov/

PFHxS

PFOA aka "C8"

PFOS

Table 1. Common PFAS: Abbreviations and Names

Abbreviation	Chemical name
PFOS	Perfluorooctane sulfonic acid
PFOA (aka C8)	Perfluorooctanoic acid
PFNA	Perfluorononanoic acid
PFDA	Perfluorodecanoic acid
PFOSA (aka FOSA)	Perfluorooctane sulfonaminde
MeFOSAA (aka Me-PFOSA-AcOH)	2-(N-Methyl-perfluorooctane sulfonamido) acetic acid
Et-FOSAA (aka Et-PFOSA-AcOH)	2-(N-Ethyl-perfluorooctane sulfonamido acetic acid
PFHxS	Perfluorohexane sulfonic acid

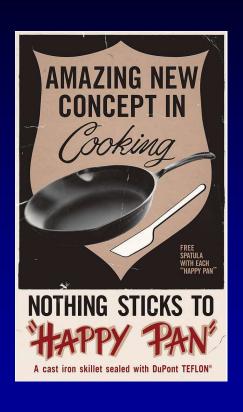
https://www.atsdr.cdc.gov

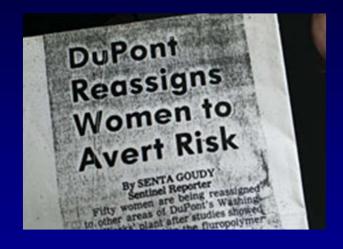
PFAS

Uses

- Non-stick cookware (Teflon)
- Carpet/clothing stainproofing
- Paper/cardboard waterproofing
- Class B Aqueous film forming foams (AFFF) aka fire fighting foams

Exposure Sources


- Drinking Water
- Dust
- Seafood
- Fast food
- Produce



A (very) Brief History

1960s-1970s

1980s

1940s-1950s

A (very) Brief History

2000s

2000-PFAS production ceased by 3M

2010s

2016 EPA LHA Recommendation

- PFOA + PFOS <70 ppt</p>
- Derived to protect fetuses and breastfed infants
- Lifetime advisory*
- May reduce in 2022

Average PFOA Water Concentrations in ppt

C8 Study: Little Hocking,	
OH	3400
Hoosick Falls Municipal	
Water	595
C8 Study: Lubeck, WV	520
C8 Study: Tuppers	
Plains, OH	310

Some states choosing to go lower than EPA LHA

EPA Final Health Advisory, 2016

NYSDOH PFOA Biomonitoring Program, 2016

13 of 44

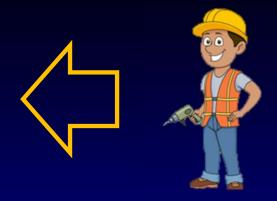
Toxicokinetics in Humans

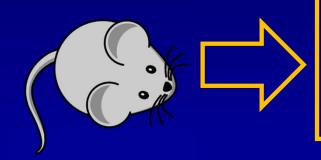
- A: ORAL >> inhaled >> dermal
- D: Focused in BLOOD, liver, kidney
- M: no known in vivo metabolism
- E: URINE >> feces >> breast milk

CDC/ATSDR, Toxicological Profile for Perfluoroalkyls, May 2021

Estimates of elimination half-lives of representative PFAS Substances

PFOA	2.1-5-8 years
PFOS	3.1-7.4 years
PFHxS	4.7-15 years
PFBA	72-81 hours

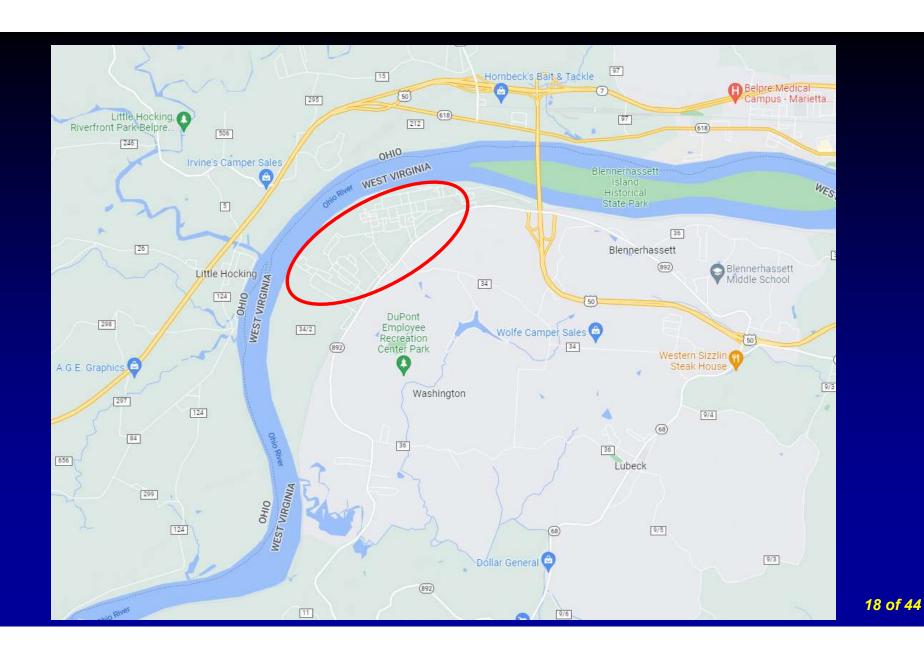

WHAT ABOUT HEALTH EFFECTS IN HUMANS?



Primarily based on PFOA / PFOS Epi Studies: Asks the <u>right</u> question Examines the <u>right species</u> at the <u>right doses</u>

BUT

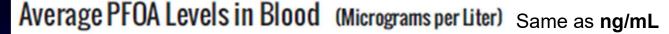
Answers the question poorly Confounders/bias complicate interpretation Not very sensitive

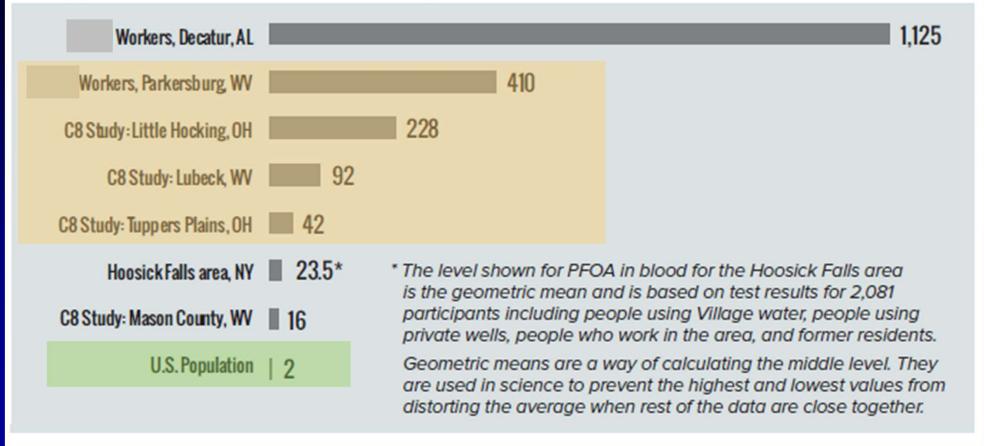


Animal Tox Studies: Asks the <u>wrong</u> question Examines the <u>wrong species</u> at <u>high doses</u>

BUT

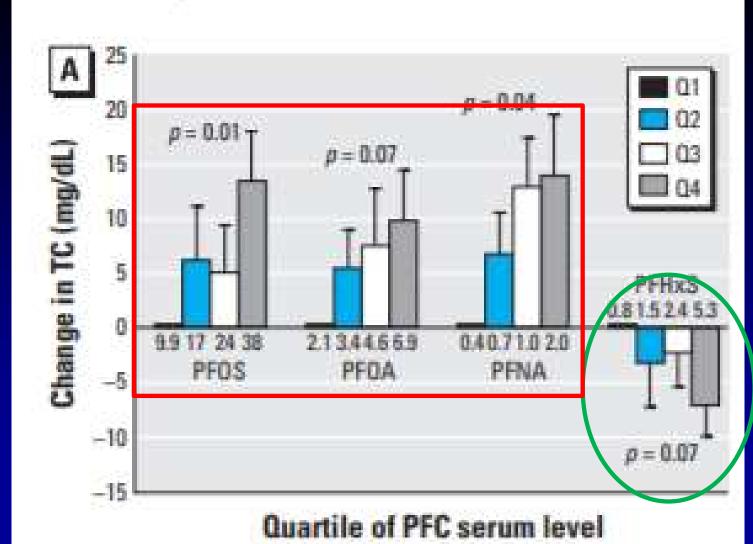
Answers the question well Tight control of all variables





C8 Science Panel

- Very Large Human Epi Study
- "Probable" Links
 - High cholesterol
 - Thyroid dysfunction
 - Ulcerative colitis
 - HTN of pregnancy
 - Testicular cancer
 - Kidney cancer
- Causality not confirmed
- "Probable link" → Legal Definition



NHANES Data

Median Values PFOS 19.9 ng/mL PFOA 3.8 ng/mL

PMID: 20123614

21 of 44

Table 3. Overall retrospective survival analysis results based on follow-up from 1952 through 2008–2011 [RR (95%)].^a

	Q2 vs. Q1 ^b	Q3 vs. Q1	Q4 vs. Q1	$ ho_{ m trend}$ of log cumulative exposure
Unlagged exposure				
Ulcerative colitis	1.76 (1.04, 2.99)	2.63 (1.56, 4.43)	2.86 (1.65, 4.96)	< 0.0001
Crohn's disease	1.25 (0.61, 2.58)	1.15 (0.55, 2.41)	1.00 (0.48, 2.09)	0.73
Rheumatoid arthritis	1.24 (0.85, 1.79)	1.40 (0.96, 2.03)	0.99 (0.68, 1.43)	0.84
Type 1 diabetes-broad ^c	0.68 (0.29, 1.58)	0.53 (0.22, 1.30)	0.54 (0.22, 1.33)	0.84
Type 1 diabetes-narrow ^d	0.83 (0.25, 2.78)	1.41 (0.40, 4.95)	0.88 (0.25, 3.06)	0.68
Lupus	1.49 (0.68, 3.34)	1.01 (0.44, 2.30)	0.71 (0.31, 1.65)	0.94
Multiple sclerosis	0.85 (0.44, 1.63)	1.56 (0.81, 3.00)	1.26 (0.65, 2.42)	0.22

C8 Cohort – PFOA Focus

Median PFOA Values Community 24 ng/mL Plant Workers 113 ng/mL

PMID: 23735465 **22 of 44**

Table 4. Associations between serum PFOA and PFOS and PIH.

PFC metric	Crude OR All births n = 1,600 (106 cases)	Adjusted ^a OR (95% CI) All births n = 1,600 (106 cases)	Adjusted OR (95% CI) First prospective $n = 770$ (43 cases)
PFOA			
Per in unit increase Per IQR increase ^c Quintile (ng/mL)	1.18 1.04	1.27 (1.05, 1.55) 1.06 (0.99, 1.14) p-trend = 0.005	1.23 (0.92, 1.64) 1.04 (0.92, 1.18) p-trend = 0.124
0 to < 6.9	1.0 (reference)	1.0 (reference)	1.0 (reference)
6.9 to < 11.1	2.37	2.39 (1.05, 5.46)	0.62 (0.13, 3.01)
11.1 to < 18.9	2.72	3.43 (1.50, 7.82)	2.68 (0.78, 9.23)
18.9 to < 37.2	2.71	3.12 (1.35, 7.18)	2.30 (0.66, 8.00)
≥ 37.2	2.59	3.16 (1.35, 7.38)	1.69 (0.45, 6.28)

C8 Cohort – >1,600 pregnancies

Median Values
PFOS 15.6 ng/mL (95th % 31.8 ng/mL)
PFOA 31 ng/mL (95th % 114.1 ng/mL)

PMID: 23838280 **23 of 44**

Table 5. HRs (95% CIs) by PFOA quartile for thyroid, kidney, and testicular cancer cases among the cohort (n = 32,254).

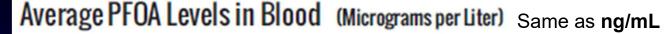
Cancer	No. of cases ^b	Quartile 1 (reference)	Quartile 2	Quartile 3	Quartile 4	<i>p</i> -Value ^c	<i>p</i> -Value ^d
Kidney							
No lag	105	1.00	1.23 (0.70, 2.17)	1.48 (0.84, 2.60)	1.58 (0.88, 2.84)	0.18	0.10
10-year lag	105	1.00	0.99 (0.53, 1.85)	1.69 (0.93, 3.07)	1.43 (0.76, 2.69)	0.34	0.15
Testes							
No lag	17	1.00	1.04 (0.26, 4.22)	1.91 (0.47, 7.75)	3.17 (0.75, 13.45)	0.04	0.05
10-year lag	17	1.00	0.87 (0.15, 4.88)	1.08 (0.20, 5.90)	2.36 (0.41, 13.65)	0.02	0.10
Thyroid							
No lag	86	1.00	1.54 (0.77, 3.12)	1.48 (0.74, 2.93)	1.73 (0.85, 3.54)	0.25	0.20
10-year lag	86	1.00	2.06 (0.93, 4.56)	2.02 (0.90, 4.52)	1.51 (0.67, 3.39)	0.57	0.65

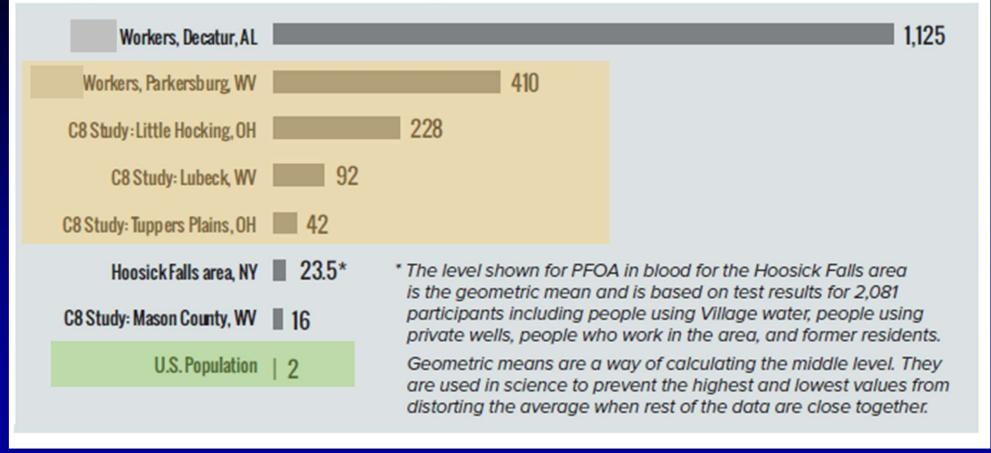
*Quartiles were defined by the estimated cumulative PFOA serum concentration among the thyroid, kidney, or testicular cancer cases at the time of cancer diagnosis. *A proportional hazards regression model was run for each cancer; each model was adjusted for time-varying smoking, time-varying alcohol consumption, sex, education, and stratified by 5-year period of birth year. Time began at age 20 years if the person's 20th birthday was in 1952 or later; otherwise time began at the age the person was in 1952; time ended at the age of cancer diagnosis, age at the last follow-up survey, or age on December 31st 2011, whichever came first. *p-Value is for linear trend test in the log rate ratios across quartiles; p-Values were calculated using exposure category midpoints and inverse variance weighting in a no-intercept linear regression model. *p-Value is from the continuous log estimated cumulative PFOA serum concentration models.

C8 Cohort - PFOA Focus

>2500 validated cancers

Median PFOA Values Community 24 ng/mL Plant Workers 113 ng/mL


Note: "Survivor Cohort"


PMID: 24007715

Occupational Epidemiology

- PFAS plant workers
 - -Outcome data
- Firefighters
 - -Exposure assessments
 - -No outcome data

WV PFOA Plant Worker Mortality Study, 2012

- 5791 workers
- 2125 blood samples, 1979-2004
- Reviewed cancer and non-cancer deaths
- Median PFOA 580 ng/mL (Rng: 160-2880 ng/mL)

PMID: 23079607 27 of 44

WV PFOA Plant Worker Mortality Study

■ 4th quartile of exposure vs. non-PFOA workers

- -Mesothelioma SMR 6.27 (2.0-14.6)**
- -Renal cancer SMR 2.66 (1.1-5.2)
- -Chronic kidney disease SMR 8.6 (3.4-17.7)
- -Diabetes SMR 1.9 (0.98-3.3)

PMID: 23079607 28 of 44

Dobraca, 2015

TABLE 4. Serum PFC Concentrations (μ g/L) in FOX Firefighters, 2010 to 2011, Compared With NHANES*

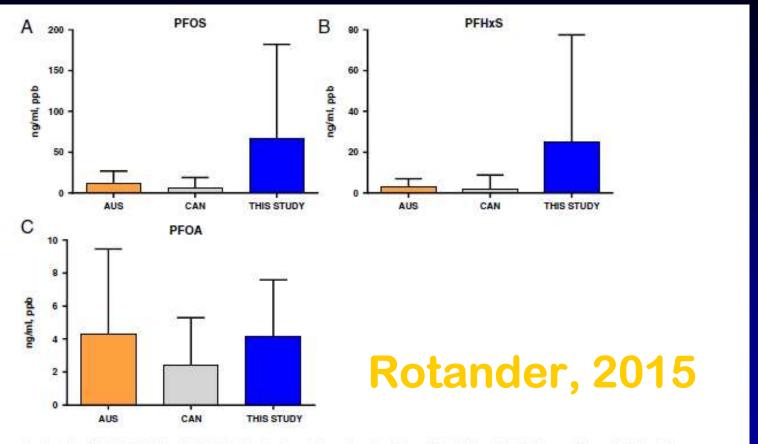
					Percentiles					Geometric
Serum PFCs	Population	n	LOD	DF (%)	25th	50th	75th	95th	Maximum	Mean‡ (95% CI)
PFOS	FOX	101	0.083	100	10.10	12.70	16.80	24.70	46.60	12.50 (11.34, 13.78)
Perfluorooctane sulfonic acid	NHANES	876	0.2	99.8	8.30	12.30	17.60	40.40	281.0	12.13 (10.43, 14.10)
PFOA	FOX	101	0.301	100	2.96	3.86	4.89	9.54	18.10	3.75 (3.37, 4.17)
Perfluorooctanoic acid	NHANES	876	0.1	99.7	2.70	3.70	5.10	8.20	24.00	3.61 (3.28, 3.98)
PFHxS	FOX	101	0.012	100	1.61	2.27	3.13	4.64	13.20	2.26 (2.00, 2.54)
Perfluorohexane sulfonic acid	NHANES	876	0.1	99.6	1.40	2.20	3.40	6.90	44.80	2.15 (1.93, 2.40)
PFNA	FOX	101	0.075	100	0.89	1.13	1.49	2.21	4.23	1.15 (1.06, 1.25)
Perfluorononanoic acid	NHANES	876	0.082	99.8	0.98	1.31	1.89	4.18	17.95	1.40 (1.20, 1.63)
PFDeA	FOX	101	0.032	100	0.51	0.72	1.72	2.63	4.60	0.90 (0.78, 1.03)
Perfluorodecanoic acid	NHANES	876	0.1	96.4	0.20	0.30	0.40	0.90	20.70	0.30 (0.28, 0.34)

- California study
- 101 Firefighters

Some ↑ PFHpA if Class A Foam used in last year**

PMID: 25563545 30 of 44

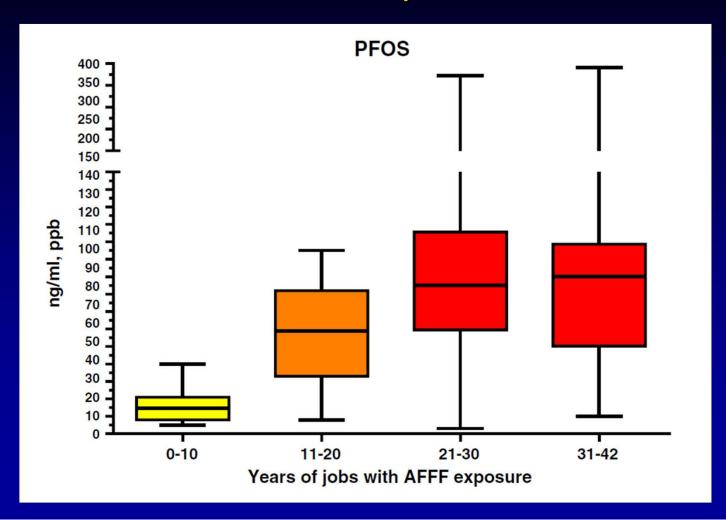
Rotander, 2015


Table 1Serum levels (ng/mL serum) of eleven PFAAs found above LOD in 149 firefighters.

Compound	% > LOD	Mean (SD)	Median	Range
Perfluorooctanesulfonic acid, PFOS	100	74 (61)	66	3.4-391
Perfluorohexanesulfonic acid, PFHxS	100	33 (36)	25	0.7-277
Perfluorooctanoic acid, PFOA	100	4.6 (2.4)	4.2	0.3-18
Perfluoroheptanoic acid, PFHpA	50	0.10 (0.08)	0.07	<0.03-0.38
Perfluorononanoic acid, PFNA	100	0.76 (0.3)	0.69	0.09 - 2.4
Perfluorodecanoic acid, PFDA	99	0.29 (0.13)	0.27	< 0.04 - 0.99
Perfluoroundecanoic acid, PFUnDA	88	0.16 (0.08)	0.14	<0.06-0.58
Perfluorododecanoic acid, PFDoDA	6.6	NC	< 0.05	<0.05-0.12
Perfluorotridecanoic acid, PFTrDA	7.9	NC	< 0.06	< 0.06 - 0.10
Perfluorobutanesulfonic acid, PFBS	2.6	NC	< 0.02	< 0.02 - 0.09
Perfluorodecanesulfonic acid, PFDS	3.3	NC	<0.03	<0.03-0.07

NC = not calculated due to low detection rates.

- Australian study
- Serum PFOS 6-10x ↑ than gen pop
- Serum PFOS 20x ↓ than PFOS workers
- <10 yrs of firefighting = gen pop


PMID: 26001497 31 of 44

Hg. 1. Serum concentrations (ng/mL) of A) PROS, B) PRHxS, and C) PROA in 16 pooled samples from Queensland, Australia (AUS), from 2010/2011 (n = 1600), and individual plasma samples from a Canadian health survey from 2010 to 2011 (n = 1016), and in this study's 149 firefighters. The whiskers indicate the 95th percentile and the columns indicate median concentrations for THIS STUDY and CAN, and mean concentrations for AUS.

PMID: 26001497 32 of 44

Rotander, 2015

PMID: 26001497

Graber, 2021

- 116 volunteer FF in NJ
- Compared to NHANES
- Reported less use of AFFF

	PFAS Prevalence 1					
	C.L.D.C	NHA	NES			
	CAPS (n = 116)	2015–2016 (n = 274)	2017–2018 (n = 272)			
Perfluorononanoic acid (PFNA)	100	98.2	92.1			
Perfluorohexanesulfonic acid (PFHxS)	100	98.4	99.4			
Perfluorooctanoic acid ⁴ (PFOA)	100	100	100			
Perfluorooctanesulfonic acid ⁴ (PFOS)	100	100	100			
2-(N-Methyl-perfluo- rooctane sulfonamido) acetic acid (MeFOSAA)	11.2	38.9	60.6			
Perfluorodecanoic acid (PFDA)	99.1	69.6	89.3			
Perfluoroundecanoic acid (PFUnDA)	46.6	40.8	65.5			
Perfluorododecanoic acid (PFDoA)	80.1	2.4	-			

PMID: 33918459 34 of 44

Graber, 2021

_				PFAS Serum L	evels (ng/mL))
	CARC	(110)			NHA	NES
	CAPS	(n = 116)	20	015-2016 (n = 27	74)	
	gm ²	(95% CI) ³	Gm ²	(95% CI) ³	% diff ³	(
Perfluorononanoic acid	0.07	(0.00, 1.05)	0.62	(0.5(, 0.70)	25.10/	
(PFNA)	0.97	(0.89, 1.05)	0.63	(0.56, 0.70)	35.1%	
Perfluorohexanesulfonic	1.00	(1 (1 2 00)	1.00	(1 55 2 00)	1 (0/	
acid (PFHxS)	1.83	(1.61, 2.09)	1.80	(1.55, 2.09)	1.6%	
Perfluorooctanoic acid 4	2.07	(1.00, 2.26)	1.94	(1.76.2.14)	6.3%	,
(PFOA)	2.07	(1.89, 2.26)	1.94	(1.76, 2.14)	0.3%	,
Perfluorooctanesulfonic	4.25	(2.76.4.90)	6.76	(6 12 7 47)	-59.1%	
acid ⁴ (PFOS)	4.25	(3.76, 4.80)	0.76	(6.13, 7.47)	-39.176	
2-(N-Methyl-perfluo-						
rooctane sulfonamido)	0.08	(0.07, 0.09)	0.13	(0.11, 0.14)	-62.5%	
acetic acid (MeFOSAA) Perfluorodecanoic acid						
	0.31	(0.29, 0.33)	0.15	(0.13, 0.17)	51.6%	
(PFDA)	0.31	(0.29, 0.33)	0.15	(0.13, 0.17)	31.076	ľ
Perfluoroundecanoic acid	0.11	(0.10, 0.12)	0.10	(0.09, 0.11)	9.1%	
(PFUnDA) Perfluorododecanoic acid	0.11	(0.10, 0.12)	0.10	(0.09, 0.11)	9.1 /0	,
	0.14	(0.13, 0.15)	0.07	(0.07, 0.07)	50.0%	
(PFDoA)	0.14	(0.13, 0.13)	0.07	(0.07, 0.07)	30.076	

PMID: 33918459 35 of 44

Back to Our Case

- Firefighter requests information
- Perfluorohexane sulfonic acid (PFHxS)

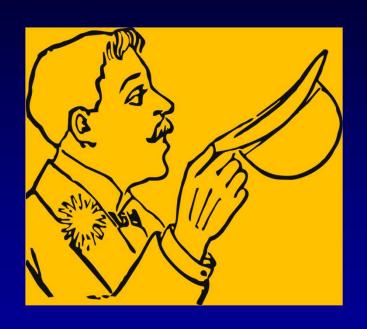
Firefighter lab report example

Substance	Abbreviation
Perfluorobutanesulfonic Acid	PFBS
Perfluoroheptanoic Acid	PFHpA
Perfluorohexanesulfonic Acid	PFHxS
Perfluorooctanoic Acid	PFOA; FC-143 Component
Perfluorononanoic Acid	PFNA
Perfluorooctanesulfonic Acid	PFOS

Perfluorohexanesulfonic Acid 1.7 ng/mL

Reporting Limit: 0.050 ng/mL

Synonym(s): PFHxS


Population reference interval derived from NMS Labs data (n=151) is usually less than 5.8 ng/mL (90% CI, 4.1 - 17 ng/mL) (97.5th percentile)

General U.S. population from CDC-NHANES (2015-2016) (n=1993) (isomers not described) is typically below 4.9 ng/mL (95% CI, 4.1 - 5.8 ng/mL) (95th percentile)

Analysis by High Performance Liquid Chromatography/ Tandem Mass Spectrometry (LC-MS/MS)

Downs Thoughts

- Reassurance (at this time)
 - Outcome data specific to PFHxS is limited
- Focused clinical evaluation if warranted
 - -No additional testing "just to see"
 - -Standard CBC, CMP unlikely to be altered
- Human Clinical Testing for PFAS is limited
 - In both availability and utility
 - -Available for firefighters only in DOD

Don't Forget Basic OEM Practice

If We Saw an Employee With Elevated Biomarkers For Any Other Substance, What Would We Do?

CDC Now Recruiting for 'Pease Study' on Health Effects of PFAS in Drinking Water

New Hampshire Public Radio | By Annie Ropeik Published October 25, 2019 at 11:41 AM EDT

Future Efforts

Enrollment ended Dec 2021

Expect results in 2 years

41 of 44

The Defense Department held its second virtual PFAS public engagement recently, the first being in July. Attendees were primarily from communities around military installations where PFAS, or per- and polyfluoroalkyl substances, have been identified in groundwater.

Representatives from the White House and the Environmental Protection Agency also attended.

Future Efforts

Another talk for another day by another speaker...

42 of 44

Questions/Discussion

Thank you!

John W. Downs, MD, MPH, FACP, FACOEM
LTC(P), MC, USA
Medical Toxicologist
Associate Program Director
Occupational & Environmental Medicine Residency
Uniformed Services University, Bethesda, Maryland
Email: john.downs@usuhs.edu

Twitter: @downsjw2000